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Wave aberrations were measured with a Shack-Hartmann wavefront sensor (SHWS) in the right eye of a large young 
adult population when accommodative demands of 0, 3, and 6 D were presented to the tested eye through a Badal 
system. Three SHWS images were recorded at each accommodative demand and wave aberrations were computed over 
a 5-mm pupil (through 6th order Zernike polynomials). The accommodative response was calculated from the Zernike 
defocus over the central 3-mm diameter zone. Among all individual Zernike terms, spherical aberration showed the 
greatest change with accommodation. The change of spherical aberration was always negative, and was proportional to 
the change in accommodative response. Coma and astigmatism also changed with accommodation, but the direction of 
the change was variable. Despite the large inter-subject variability, the population average of the root mean square for all 
aberrations (excluding defocus) remained constant for accommodative levels up to 3.0 D. Even though aberrations 
change with accommodation, the magnitude of the aberration change remains less than the magnitude of the uncorrected 
aberrations, even at high accommodative levels. Therefore, a typical eye will benefit over the entire accommodative range 
(0-6 D) if aberrations are corrected for distance viewing.  

Keywords: wave aberrations, accommodation, spherical aberration, coma, wavefront sensing, customized corrections 

Introduction 
Wave aberrations have been measured in large popula-

tions when the eye’s accommodation is relaxed under natu-
ral viewing condition or paralyzed with cycloplegic agents 
(Porter, Guirao, Cox, & Williams, 2001; Thibos, Hong, 
Bradley, & Cheng, 2002b; Castejon-Mochon, Lopez-Gil, 
Benito, & Artal, 2002). In an accommodated eye, wave 
aberrations are expected to change because ocular struc-
tures, particularly the shape, position, and refractive index 
gradient of the crystalline lens change during accommoda-
tion (Garner & Yap, 1997; Garner & Smith, 1997; Koretz, 
Cook, & Kaufman, 2002). In fact, many studies have dem-
onstrated such accommodation-induced changes in aberra-
tions, which include changes of defocus (Ciuffreda, 1991), 
astigmatism (Millodot & Thibault, 1985; Ukai & Ichi-
hashi, 1991; Mutti, Enlow, & Mitchell, 2001; Tsukamoto, 

Nakajima, Nishino, Hara, Uozato, & Saishin, 2000), 
spherical aberration (Ivanoff, 1956; Jenkins, 1963; 
Koomen, Tousey, & Scolnik, 1949; van den Brink, 1962), 
and other higher order aberrations (Atchison, Collins, 
Wildsoet, Christensen, & Waterworth, 1995; He, Burns, 
& Marcos, 2000; Ninomiya et al., 2002; He, Marcos, 
Webb, & Burns, 1998; Howland & Buettner, 1989; Lu, 
Campbell, & Munger, 1994; Vilupuru, Roorda, & Glasser, 
2004).  

A review of the literature revealed a general tendency 
for spherical aberration to change in a negative direction 
with increases in accommodation, although large variability 
existed among individuals and studies (Koomen et al., 
1949; Ivanoff, 1956; Jenkins, 1963; He et al., 2000; Nino-
miya et al., 2002). For example, all subjects in the He et al. 
study (2000) showed a decrease in spherical aberration with 
accommodation, whereas only half the subjects in a study 

doi:10.1167/4.4.3 Received October 1, 2003; published April 16, 2004 ISSN 1534-7362 © 2004 ARVO 

Downloaded from jov.arvojournals.org on 03/08/2019

http://journalofvision.org/4/4/3/
http://www.opt.uh.edu/
http://www.opt.uh.edu/
http://www.opt.uh.edu/
http://www.opt.uh.edu/
http://www.opt.uh.edu/
http://www.opt.uh.edu/
http://www.opt.uh.edu/research/aroorda/
mailto:hcheng@optometry.uh.edu?subject=http://journalofvision.org/4/4/3/
mailto:avilupuru.2004@alumni.opt.uh.edu?subject=http://journalofvision.org/4/4/3/
mailto:avilupuru.2004@alumni.opt.uh.edu?subject=http://journalofvision.org/4/4/3/
mailto:jmarsack@optometry.uh.edu?subject=http://journalofvision.org/4/4/3/
mailto:sanjeev.kasthurirangan@mail.uh.edu?subject=http://journalofvision.org/4/4/3/
mailto:rapplegate@optometry.uh.edu?subject=http://journalofvision.org/4/4/3/
mailto:jqs@ucla.eduaroorda@uh.edu?subject=http://journalofvision.org/4/4/3/


Journal of Vision (2004) 4, 272-280 Cheng, Barnett, Vilupuru, Marsack, Kasthurirangan, Applegate, & Roorda 273 

by Atchison et al. (1995) had a similar trend. Fewer studies 
investigated high-order aberrations other than spherical 
aberration in accommodated eyes and the results were less 
conclusive. It seemed the direction and magnitude of the 
change in coma varied greatly between subjects and no 
clear trend was observed (He et al., 2000; Howland & 
Buettner, 1989; Lu et al., 1994; Atchison et al., 1995). For 
aberrations with orders above fourth, He et al. (2000) re-
ported a minimum near the resting state of accommoda-
tion (around 2 D), which was not confirmed in a recent 
study by Ninomiya et al. (2002). In addition to the above-
mentioned changes in individual aberration terms, several 
authors have reported the effect of accommodation on 
overall wave aberrations measured by the root mean square 
(RMS), or variance of the wavefront error (He et al., 2000; 
Ninomiya et al., 2002; Atchison et al., 1995). According to 
He et al. (2000), despite large individual variation, the aver-
age RMS (excluding defocus term) decreased from 0 to 1 D 
and remained minimum between 1 to 3 D, then increased 
with higher accommodation. Ninomiya et al (2002), how-
ever, found no change in the RMS of the total higher order 
aberrations with a 3 D accommodation, which was consis-
tent with Atchison et al (1995), who reported no change of 
variance between 0 to 3 D accommodation.   

Previous studies of ocular aberrations in accommo-
dated eyes used different techniques and investigated rela-
tively small populations [e.g., Atchison et al. (1995) studied 
15 subjects with an objective aberroscope, and He et al. 
(2000) applied a psychophysical ray-tracing test called the 
spatially resolved refractometer on eight observers (Webb, 
Penney, & Thompson, 1992)]. The range of accommoda-
tion studied and the pupil sizes used for analyzing aberra-
tions also varied among studies. All of these make direct 
comparisons between studies difficult. To date, no suffi-
cient data are available to characterize the individual varia-
tion in aberrations for eyes with accommodation. Such in-
formation is crucial for understanding the fundamentals of 
the visual system (Thibos, Bradley, & Hong, 2002a) and 
has important implications in clinical applications (Wil-
liams, Yoon, Guirao, Hofer, & Porter, 2001; Applegate, 
Thibos, & Hilmantel, 2001; Macrae, Schwiegerling, & 
Snyder, 2000). 

The recent development of the Shack-Hartmann wave-
front sensor for vision science has allowed rapid, accurate 
and objective measurements of wave aberrations and made 
large population studies possible (Liang & Williams, 1997; 
Porter et al., 2001; Thibos et al., 2002b). In this study, we 
measured wave aberrations with a Shack-Hartmann wave-
front sensor in a large young adult population for accom-
modative stimuli up to 6 D. Zernike coefficients up to the 
sixth order were studied.  

Methods 
This research followed the tenets of the Declaration of 

Helsinki, and was approved by the University of Houston 

Human Subject Review Committee. Informed consent was 
obtained from subjects after they received a verbal and writ-
ten explanation of the nature and possible risks of the 
study.  

Subjects 
Ninety-one optometry students at the University of 

Houston, College of Optometry, participated in the study. 
Measurements were taken only for the right eye. Of the 91 
subjects, the excluded subjects included two amblyopic 
eyes, one eye which had undergone a corneal transplant, 10 
subjects who did not maintain at least a 5-mm pupil size for 
all accommodative states, and 2 subjects whose accommo-
dation during the repeated measurements was unstable (>1 
D SD for any of the accommodative stimuli). For static 
population statistics, two additional eyes that had under-
gone LASIK refractive surgery were also excluded. There-
fore, a total of 76 subjects are reported for the changes in 
aberration with accommodation, and 74 subjects for the 
population statistics. All subjects had good ocular health 
with best-corrected visual acuity better than 20/30 (average 
20/17) in the tested eye. The subjects ranged in age from 
21-40 years with a mean (+/– SD) of 24.8 +/– 4.0 years. 
The spherical refractive error ranged from + 1.25 D to –
8.25 D with a mean (+/–SD) of –2.50+/–2.25 D; and the 
astigmatism ranged from –0.25 D to –2.75 D with a mean 
(+/–SD) of –0.70+/–0.54 D. Significant refractive errors 
were corrected with spectacles or trial lenses during the ex-
periment. The mean (+/–SD) residual uncorrected refrac-
tive error was –0.43+/–0.60 D for the sphere and -0.17+/–
0.31 D for the cylinder.  

Dilation was achieved with one drop of 2.5% 
phenylephrine preceded by one drop 0.5% proparacaine 
(Lyle & Bobier, 1977; Jauregui & Polse, 1974). Subjective 
refraction and best corrected visual acuity were obtained 
with Bailey-Lovie charts for the dilated eyes prior to the 
aberration measurements. 

Experimental design and procedures 
A custom-built Shack-Hartmann wavefront sensor 

(SHWS) was used to measure the wave aberration. The de-
sign of the SHWS followed the basic principles described 
in Liang and Williams (1997). In brief, a focused beam of 
low-intensity laser light (10 µW at 830 nm) projected on 
the retina acted as a point source, and the light emerging 
from the pupil was imaged onto a lenslet array (0.4-mm 
spacing, 24-mm focal length), which focused onto a CCD 
camera placed in the focal plane of the lenslet array. An 
array of spots (an SHWS image) was thus recorded. To con-
trol accommodation, a Maltese cross target (McLin, Schor, 
& Kruger, 1988) was set behind a Badal system, and pro-
jected to the tested eye through a beam splitter attached in 
front of the SHWS. 

During the imaging process, the Maltese cross target 
was initially located at optical infinity for low hyperopic or 
emmetropic eyes or slightly behind the subject’s far point 
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for low myopic subjects (< – 2 D) to ensure relaxed accom-
modation. An accommodative response was elicited by 
moving the target behind the Badal lens to create 3 D and 
6 D of accommodative demand. Subjects were instructed to 
focus on the target and maintain the focus while aberration 
measurements were being performed. At least three SHWS 
images were recorded at each accommodative demand for 
every subject. 

Data analysis 
The digitized spot images taken by the SHWS were 

analyzed using custom written software. The local slopes of 
the wavefront were computed based on the displacement of 
spot centroids from the reference array of the lenslet cen-
ters. The local slopes were fitted to the derivatives of a 
Zernike polynomial function using the method of least 
squares. The wave aberration function, W(x, y), is repre-
sented by a weighted sum of the series of Zernike modes: 

  
W (x, y) = Cn

mZn
m x, y(

n,m
∑ ) (1) 

where W(x, y) is defined over the x, y coordinates of the 
pupil, C is the Zernike coefficient corresponding to a par-
ticular Zernike mode, Z, and n and m refer to the different 
radial and angular orders, respectively. Zernike coefficients 
representing the wave aberration were specified using the 
standard nomenclature defined with reference to the stan-
dard coordinate system recommended by the Optical Soci-
ety of America (Thibos, Applegate, Schwiegerling, Webb, 
& VSIA Standards Taskforce Members, 2000).  

Wave aberrations were computed over a 5-mm pupil up 

to 6th order Zernike polynomials. For every subject, three 
sets of SHWS images were analyzed for each accommoda-
tive stimulus. The subject’s wave aberration under a par-
ticular stimulus condition was represented by the mean 
Zernike coefficient of three measurements. 

The accommodative response was calculated from the 
Zernike defocus term over the central 3-mm diameter zone 
as the difference between the defocus at 3 D or 6 D stimu-
lus and that at 0 D stimulus. A smaller pupil diameter was 
used for the calculation of accommodative response to pre-
vent the high-order aberrations of larger pupil sizes from 
affecting the overall refraction.  

Results 

Population statistics on wave aberrations in 
relaxed eyes 

Figure 1 illustrates the average value (1a) and the mean 
absolute magnitude (1b) of each Zernike term for 74 re-
laxed eyes (0 D stimulus) (two subjects who had undergone 
LASIK surgery were excluded from the population statis-
tics). Most noticeable from Figure 1a is the large dispersion 
of each Zernike term indicating large inter-subject variabil-
ity in the population. In addition, most Zernike terms aver-
age around zero except for spherical aberration, which is 
biased toward positive. Figure 1b compares the magnitude 
(RMS) of wavefront errors for different high-order aberra-
tions. Compared to the 3rd and 4th order aberrations, the 5th 
and 6th order wavefront errors contribute much less to the 
total variance of the wave aberration.  
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Figure 1. Population statistics of high-order aberrations for 74 relaxed eyes over a 5-mm pupil. (a). Mean values of Zernike coefficients.
Error bars represent 1 SD. (b). The mean absolute magnitude (RMS) of Zernike terms. Error bars represent 1 SEM. 
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Figure 2. The SHWS spot patterns and the corresponding wave aberration plots (with 2nd order aberrations excluded) for a typical eye
under three accommodative conditions. The contour interval in the aberration map is 0.1 micrometers. 

SHWS images for an eye before and after ac-
commodation 

Figure 2 shows the SHWS spot patterns (top row) and 
the corresponding wave aberration maps (bottom row) in 
an eye under three accommodative conditions. The hori-
zontal and vertical axis indicates the pupil position, with 
zero at the center of the pupil and positive values for tem-
poral and superior locations. Defocus and astigmatism are 
excluded from the aberration map. When accommodation 
increases, the SHWS spot patterns show a more pro-
nounced pincushion effect, indicating an introduction of 
negative spherical aberration. The sequential changes in the 
three contour maps clearly depict how negative spherical 
aberration and coma-like aberrations emerged with in-
creased accommodation. For this subject, the overall wave 
aberration increased with accommodation.  

Change in individual aberration terms with 
accommodation 

Figure 3 plots the change in each Zernike term (2nd 
through 6th order, excluding defocus) as a function of the 
change in accommodative response for individual subjects. 
Among all the aberrations, spherical aberration (Z12) shows 
the largest change with accommodation. The change in 
spherical aberration is always negative, indicating that 
spherical aberration always moves in a negative direction 
with increased accommodation. The amount of change in 
spherical aberration is linearly related to the amplitude of 
accommodation (slope = -0.0435 micrometers/D, r = 0.85, 
95% confidence predictive range at any level of accommo-
dation is +/– 0.085 micrometer). Coma (Z7, Z8) and astig-
matism (Z3, Z5) also change with accommodation, but the 
direction of the change varies, going in either a positive or 
negative direction. The change in other terms is much 

smaller and reveals no clear trend. Figure 4 plots the RMS 
of the change in the astigmatism terms (Z3 and Z5 com-
bined), the coma terms (Z7 and Z8 combined), and spheri-
cal aberration term (Z12) with accommodation. The rates 
of change of coma and astigmatism are about one third 
that of spherical aberration for a 5-mm pupil size. Special 
considerations taken while computing the RMS of the dif-
ference between two measured variables are described in 
the appendix. 
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Figure 3. Change in 2nd through 6th order Zernike coefficients
from those in the relaxed state as a function of the change in
accommodation for all subjects. The symbols in the plot are la-
beled according to their respective Zernike terms (3, 5-27).
Zernike values that undergo small changes are not visible due to
overlap. Dominant terms, such as astigmatism (Z3 & Z5) and
coma (Z7 & Z8), are visible on either side of zero. The most
dominant term, spherical aberration (Z12), is consistently below
zero and becomes more negative with accommodation.  
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Figure 5 compares the population average of the 
change in each aberration term, excluding defocus, at dif-
ferent levels of accommodative response. Clearly, spherical 
aberration becomes more negative as accommodation in-
creases, whereas the average change for other terms is 
around zero. The only exception is at the highest accom-
modative state where several additional terms, most notably 
Z5 and Z7, are significantly different from zero. The nega-
tive shift of Z5 indicates that the eye undergoes a small shift 
(average change = –0.1 D axis 180) toward with-the-rule 
astigmatism at the highest level of accommodation. The 
tendency for vertical coma (Z7) to become more positive at 
the highest accommodative state could be explained by the 
lens with negative spherical aberration dropping relative to 
the pupil. However, our results cannot confirm that.  

Discussion 
The distribution of high-order aberrations in the re-

laxed eyes in our study is in good agreement with previous 
studies (Porter et al., 2001; Thibos et al., 2002a, 2002b). 
Each high-order Zernike coefficient averages around zero, 
with the exception of spherical aberration. The average 
spherical aberration (+/- SD) at the resting state is +0.065 
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ported by Porter et al. (2001). This is likely due to our 
younger population because spherical aberration becomes 
more positive with age (McLellan, Marcos, & Burns, 2001; 
Glasser & Campbell, 1998). Although the effect of natural 
accommodation could not be completely ruled out, it 
probably did not play a significant role because care was 
taken to relax the accommodation. The average SD for all 
subjects for the 0 D stimulus was +/– 0.135 D for defocus, 
indicating a stable accommodative state. In young human 
eyes, it is known that the positive corneal spherical aberra-
tion is partially balanced by the negative spherical aberra-
tion of the internal optics, mainly the crystalline lens (Artal, 
Guirao, Berrio, & Williams, 2001; He, Gwiazda, Thorn, & 
Held, 2003a; El Hage & Berny, 1973; Smith, Cox, Calver, 
& Garner, 2001). The positive spherical aberration we ob-
served for the whole eye thus represents the residual posi-
tive spherical aberration from the anterior corneal surface. 

It is still controversial if the cornea changes shape and 
curvature during accommodation. Some found a steepened 
corneal curvature during accommodation (Yasuda, Yama-
guchi, & Ohkoshi, 2003), others found no change 
(Buehren, Collins, Loughridge, Carney, & Iskander, 2003) 
or a flattened corneal curvature (Pierscionek, Popiolek-
Masajada, & Kasprzak, 2001). Despite possible changes in 
the corneal shape and curvature with accommodation, it 
seems that the change of corneal aberrations during ac-
commodation is relatively small (He, Gwiazda, Thorn, 
Held, & Huang, 2003b). Actually, He et al. (2003b) re-
ported a very small positive shift of corneal spherical aber-
ration with accommodation.  

The change in optical aberrations with accommodation 
can be attributed largely to the changes of the crystalline 
lens. The crystalline lens shows an increase of the anterior 

lens curvature centrally and possibly a flattening of the lens 
peripherally during accommodation (Brown, 1973; Koretz, 
Handelman, & Brown, 1984; Garner & Yap, 1997). In 
fact, a negative shift in the spherical aberration has been 
observed in the in vitro lenses of both young humans 
(Glasser & Campbell, 1998) and monkeys (Roorda & 
Glasser, 2004). A tilt or vertical shift of the lens during ac-
commodation may create a change in coma and astigma-
tism, although the direction of such changes is less predict-
able, consistent with the largely variable changes observed 
for both of these terms in the current study. 

In the results, we described in detail how individual 
aberration terms change as a function of accommodation. 
However, the image quality is related to the overall wave-
front errors, thus it is important to know how accommoda-
tion affects the RMS of the total aberrations. We are be-
ginning to learn that for the level of aberration in the hu-
man eye, the RMS wave aberration is not the best indicator 
of image quality (Applegate, Marsack, Ramos, & Sarver, 
2003) and that other metrics may be more suitable (Guirao 
& Williams, 2003; Marsack, Thibos, & Applegate, 2004; 
Cheng, Bradley, & Thibos, 2004; Thibos, Hong, Bradley, 
& Applegate, 2004). However, the RMS is a standard met-
ric to quantify the magnitude of the change in aberration, 
which is why we report it here. In Figure 6, the blue bars 
represent the population average of the RMS of all aberra-
tions (excluding defocus) as a function of the change in 
accommodative response. Despite large individual varia-
tions, the mean RMS does not change for accommodation 
up to 3.0 D, after which there is a tendency for the RMS to 
increase. For accommodation levels greater than 3.0 D, the 
mean RMS is significantly different (P < 0.05) from that at 
the relaxed state. The trends in the RMS-accommodation 
function described above can be predicted by looking closer 
at the changes of individual Zernike terms with accommo-
dation. As shown in Figure 7, spherical aberration generally 
decreases from an average positive to an average negative 
value and, plotted alone, would generate a V-shaped RMS 
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Figure 6. The population mean for the RMS of all aberration
terms (Z3, Z5-Z27) for 74 subjects as a function of accommoda-
tion under three different conditions: all aberrations present (blue
bars), all aberrations corrected for the relaxed state (red bars),
and all aberrations except spherical aberration corrected for the
relaxed state (green bars). For each condition, the astigmatism is
corrected in the resting state and only the changes in astigma-
tism are included for the accommodated states. Error bars rep-
resent 1 SEM. 

Figure 7. The coefficient for spherical aberration as a function of
the change in accommodative response for all subjects under
three different stimulus conditions: triangles for 0 D, empty cir-
cles, and filled circles for 3 D and 6 D, respectively. 
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function. The RMS of spherical aberration reaches a mini-
mum at an accommodative level near 2 D. The RMS of 
astigmatism and third-order coma should gradually increase 
with accommodation. Other terms’ contribution to the 
RMS is largely unchanged with accommodation. So the 
overall effect on the total RMS reflecting the RMS of 
spherical aberration, astigmatism, and coma is a flat curve 
up to a moderate accommodative level followed by a ten-
dency to increase at higher accommodative levels.  

The systematic decrease in spherical aberration with ac-
commodation raises an interesting question regarding the 
strategy of wavefront correction for high-order aberrations. 
Is it advantageous to leave spherical aberration uncorrected 
when attempts are made to eliminate all high-order aberra-
tions for distance vision in a young eye (Ninomiya et al., 
2002)? Figure 6 compares the mean RMS of total aberra-
tions (excluding defocus) as a function of accommodation 
under three different conditions: all aberrations present 
(blue bars), all aberrations corrected for the relaxed state 
(red bars), and all aberrations except spherical aberration 
corrected for the relaxed state (green bars). (See the “Ap-
pendix” for a description of the special considerations 
taken when computing the RMS of the difference between 
two aberration measurements.) The mean RMS is reduced 
under both corrective conditions for all accommodative 
levels, although the benefits are less for higher accommoda-
tive levels. Obviously, the distance vision benefits the most 
when all aberrations are corrected for distance. At moder-
ate accommodative levels (1-3 D), there is no significant 
difference whether correcting spherical aberration or not. 
However, at high-accommodative levels, it is slightly more 
advantageous if spherical aberration is left uncorrected (to 
the extent that RMS wave aberrations can be used to meas-
ure changes in image quality). Previous reports on the over-
all benefits of correcting the aberration for a single accom-
modative state underestimated the benefit because the 
noise floor was not properly taken into account (Artal, 
Fernández, & Manzanera S., 2003) (See “Appendix”). 

Conclusion 
This study includes the largest sample size to date on 

the changes in aberrations with accommodation in a young 
population. The data reported generally support the previ-
ous literature. However, where several other papers report 
some variability in the results, particularly with respect to 
the fact that spherical aberration becomes more negative 
with accommodation, the current results indicate some 
strong and predictable trends. For example, given a sub-
ject’s spherical aberration at the resting state, the spherical 
aberration in the accommodated state can be predicted 
(with 95% confidence) to within +/– 0.085 micrometers 
for a 5-mm pupil.  

A typical human eye will benefit at all accommodative 
states if the aberrations are compensated for the infinity 
corrected eye. Correcting all aberrations except spherical 

aberration will provide a slightly lower RMS wave aberra-
tion for the highly accommodated eye, but at a cost of a 
higher RMS wave aberration for distance vision. 

Appendix: Noise floor calcula-
tions 

Care must be taken when computing the RMS of the 
difference between two wave aberration measurements. 
This is because there is uncertainty in the estimated value 
of each Zernike term that describes the wavefront, which 
will always amount to a positive and finite difference when 
the RMS of the difference is computed. For example, con-
sider two measurements of a static optical system. Even if 
the aberration is based on several measurements, the aver-
age value of each Zernike term between the two measure-
ments will not be the same. The difference between the 
terms will average to zero, but the RMS of the difference 
will always have a positive value. Therefore, the RMS of a 
change of aberrations will be elevated because each value is 
sitting on a noise floor caused by uncertainty in the meas-
urements. The size of the noise floor depends on the noise 
in each measurement and is specific to each device and 
method of data collection.  

For our experiment, we computed the value of the 
noise floor by first determining the average SD, term by 
term, for all of the subjects in the study. The SD for each 
subject was based on three measurements, which itself is 
not a sufficient number of samples to determine the error, 
but the average of many subjects is. Once the average SD 
for each term was known, we computed the SEM for each 
term (SEM = / 3SD ), considering three measurements. 
The SE of the difference between two repetitive measure-
ments for each term was calculated as 2 SEM⋅ . The noise 
floor was calculated as the RMS of the SE of the difference 
for all the terms. For the plots on Figure 4, the noise floor 
for astigmatism (Z3 and Z5 combined), coma (Z7 and Z8 
combined), and spherical aberration (Z12) were 0.044, 
0.033, and 0.013 micrometers, respectively. For the total 
2nd to 6th order RMS values (excluding defocus), the noise 
floor was 0.075 micrometers. These amounts were sub-
tracted from each difference value in the scatter plots of 
Figure 4 and the bar graphs of Figure 6. Not subtracting 
the noise floor values gives rise to erroneous overestima-
tions of the RMS of the change in aberrations. Incidentally, 
computing the noise floor also provides a value that indi-
cates the repeatability of the wavefront measurement.  
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