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Abstract—We compared four algorithms for controlling a
MEMS deformable mirror of an adaptive optics (AO) <anning
laser ophthalmoscope. Interferometer measurements f othe
static nonlinear response of the deformable mirrowere used to
form an equivalent linear model of the AO system seéhat the
classic integrator plus wavefront reconstructor ty@ controller
can be implemented. The algorithms differ only in lhe design of
the wavefront reconstructor. The comparisons were ade for
two eyes (two individuals) via a series of imagingessions. All
four controllers performed similarly according to estimated
residual wavefront error not reflecting the actualimage quality
observed. A metric based on mean image intensity dli
consistently reflect the qualitative observations foretinal image
quality. Based on this metric, the controller mosteffective for
suppressing the least significant modes of the defoable
mirror performed the best.

|I. INTRODUCTION

increase, we can expect increases in the diveositysers
and in the number of patients with more challengiptjcs
(i.e. post-surgery, dry eyes, etc.). Improvementsystem
performance and robustness can significantly irserethe
clinical and scientific throughput (better qualityages from
a larger pool of patients) of an AO retinal imaggygtem.
Earlier control systems used in vision science A&iesns
often exhibited immediate clipping (saturation imeo
direction) and excessively long convergence timéschv
made them impractical for clinical deployment [], Mlany
of these problems were patient dependent (fixadtability,
tear quality, retinal reflectivity, etc.), so therg a large
variability in retinal image quality among subjectéich
further complicates clinical investigations. Thearstard
basis for AO control loop design, which involves dating
the plant (DM and WFS) with a static interactiontrixa was

DAPTIVE optics has received considerable attentioadopted somewhat recently in vision science [2E Ebntrol

for vision science applications since it was fapplied
to the eye in 1997 and shown the first images maflsicone
photoreceptors in a living human eye [1]. Similathbw the
earth’s atmosphere degrades the image quality adngt-

law is an integrator in series with some type okise of the
plant called the wavefront reconstructor. The tépbn
matrix is generated experimentally through a sesfespen
loop measurements of each actuator’s spatial regpand

based telescopes, aberrations due to the eye'sabptieither the standard pseudo-inverse or regularinedrse is

imperfections degrade image quality making it difft for
clinicians and scientists to observe microscopigcstires of
the retina. Adaptive optics (AO) aims to remove Mok

used to compute the wavefront reconstructor.
We expanded on the standard AO controller desigripy
incorporating the static nonlinear actuator respoinéo an

these degradations by measuring the aberrations ait input linearization step and 2) implementing fouffedent
wavefront sensor (WFS), and through a feedbackcyoli control algorithms on a AOSLO that use a MEMS DN [4

adjust the surface profile of a deformable mirrBi) to
minimize the residual wavefront error.

Each algorithm optimizes a particular quadratia éasction
in the design of the wavefront reconstructor andsuthe

The first AO retinal imager was a standard floodtandard integrator update law. We imaged two ptie

illuminated fundus camera [1, 2] and since then, A&3
been successfully combined with other technologiesh as

using each algorithm and quantified our findingmgswo
different image quality metrics.

the scanning laser ophthalmoscope (AOSLO) [3, 4] an

optical coherence tomography [5]. But in comparigon

Il. DESCRIPTION OF THEAOSLO

astronomical AO systems, the refinement of systemhe control loop operates over the optical path the

performance, particularly at the control systenelehias not
been rigorously addressed. As the number of apjita
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AOSLO shown in Fig. (1). The infrared beam is pdavby

an 840 nm superluminescent diode (SLD) (Superludh, Lt
Russia) and a photomultiplier tube (PMT) (Hamamatsu
Japan) is used for light detection. The MEMS DM ¢Bm
Micromachines Corporation, USA) has a 12 by 12 atotu
array minus the corner pixels making a total of idfuts.

Based on measurements made using a phase shifting

interferometer (PSI), a single actuator has a stmakge of
about 1.2um. The WFS is a Shack-Hartmann type with a
subaperture diameter of 4@ and a maximum frame rate
of about 25 Hz. For a 6 mm diameter pupil, the \iiave is



sampled at 213 locations.

The infrared beam is coupled into the imaging datha
beam splitter and passes through a series of Edigs,
DM, and scanning mirrors before being focused dhi®
retina. The reflected light from the retina retuaisng the
same path reaching the same beam splitter. Masteaight
passes through the beam splitter and is focusatdeoplane
of the confocal pinhole. Light reaching the PMTaverted
into a voltage signal that is digitized by a framadiper to
one 8-bit pixel value in the final image (512 by25dixels).
Only a small area of the retina is illuminated @y @oint in
time, so the pixel value depends on the amounéftéation
from that area and the quality of the optics tightlipasses
through before reaching the confocal pinhole. TMTHs
synchronized with the scanning mirrors’ timing maaism
(HS and VS in Fig. (1)), so images are construgied| by
pixel from raster scanning the retina.

I1l. PROBLEM FORMULATION

A. AO System Loop

The wavefront from the eye is combined with the efeant
modulated by the DM surface profile to producerémdual
wavefront seen at the WFS plane. According to tloekb
diagram in Fig. (2), the error vector, which is thetput of
the WFS, is given by:

e(k) = H(z)Gu(k) + H(z")w (4)
whereu(k) andw are the input vector and the eye’s wave
aberrations respectively. The WFS does not meathee
wavefront directly but acquires a digital imageingsa CCD
camera, where wavefront gradients are estimatedamia
image processing algorithm. For the purpose of shigly,
we assume this algorithm to be sufficiently acacurdthe
best correction is achieved when the residual wawueéfis
flat or the gradient is zero. Since the DM is ngarl

The intensity point spread function (PSF) is thgystantaneous [7], the only plant dynamics are tiughe

autocorrelation of the single-pass PSF (two-dirmearai
impulse response of the imaging system).

Hep (6 ) = [[H Oy OH (¢ x,y  y)ax dy &

WhereHgy, andH are the double-pass and single-pass PS

respectively. The double-pass PSF is imaged omt@line
of the circular confocal pinhole modeled here wih
rectangle function:

c(x, y):rect(\/x2+y2/D) (2)
where D is pinhole diameter (50 to &0n). The PMT
integrates light transmitted by the pinhole, sohkie of a
pixel is always proportional to the integrated ity at that
point in the raster scan [6]:

i 0[] €% Y)H g (. y)clxdly (3)

CCD integration time of the WFS.

The DM and WFS in eq. (4) are modeled by the
interaction matrix T mapping the input vector to the
p@vefront gradients corresponding to the DM surface
yr (k) = Tu(k ~1) (5)

The one step delay is due to the integration tifh¢he
WFS. When combined with the gradients of the incami
wavefront from the eye, eq. (4) simplifies to:
ek)=Tu(k-1)+vy, (6)
wherevy,, is the vector of sampled gradients of the eye’s
aberrated wavefront. The standard integrator lawleyed
by most AO systems is:

u(k) =u(k—1)+Lle(k) +v(Kk)] (7
where L is the wavefront reconstructor matrix anfk) is

Minimizing the residual wavefront error condensdg t photon and CCD readout noise. From eq. (6) and7@pwe

spatial distribution of the PSF so more light pasgough
the pinhole increasing the pixel value.
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Fig. 1. Schematic diagram of the AOSLO (PMT — phatéiplier tube, CP
— confocal pinhole, BS — beam splitter, WFS — weorgf sensor, SLD —
superluminescent diode, DM — deformable mirror,-Hi$orizontal scanner,
VS — vertical scanner).

find the error update equation to be:
ek+1)=[1+TLE(k) +TLv (k) (8)

When noise appears to be dominating the measurement
signal, the CCD camera’s integration time is hdigcady
adjusted in real-time by the operator to detectemiaght
from the retina increasing signal to noise ratibe Tradeoff
is a reduction in temporal bandwidth which appedarde
less critical than the accuracy in estimating thierevector.
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Fig. 2. Block diagram of the closed loop AO systénis the 140 by 140
identity matrix and_ is the wavefront reconstructor



B. Input linearization

The system described by eq. (6) through eq. (8)nass the
mapping between the input and measurement veaiobe t
linear. When the input is voltage, this model oapplies to
linear DMs such as the piezoelectric DMs employed
several other systems [1, 3]. For MEMS, a linedidrastep
is required to approximate an equivalent lineatesyis

Deflection is achieved via electrostatic actuatema bias
voltage needs be applied to the entire DM in otdexctuate
in both directions. The biased position should autodate
a maximum positive and negative single actuatoledgbn
of equal magnitude, and the bias voltage was fasidg a
PSI to be about 190 V. From this position, a siragleuator
is first released to 0 V and then driven incremignta 265
V while measuring the deflection every 20 V (excépm
260 V to 265 V). Deflections for six different aators,
averaged and normalized to range from -1 to 1shosvn in
Fig. (3) with a second order polynomial fit. Defigi the
input vector as a set of normalized deflectionstebet
approximates the desired linear system model.
corresponding actuator voltages are found by sglfan the
roots of the fitted polynomial.

S LY =-3.154:107¢ + 8.259x107% + 0.995
9
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Fig. 3. Normalized deflection versus voltage curZeor bars denote one
standard deviation for six different actuators.

C. Interaction Matrix

Identification of the interaction matrixI is done by
introducing a nearly flat wavefront into the systevith a
model eye (lens and a diffuse scatterer positi@iede focal
point) and measuring the static response of allatttaators
[8]. The DM is set at the biased state and eachasmt is
pushed and pulled while measurements are made tidgth

WFS. Lettingt” denote the gradients measured when abh =—(T T +a¥ F +p/v T) T T

input of 1 (0 V) is applied to thé" actuator andt, the

gradient measured when -1 (265 V) is applied tosime
actuator, thé™ column of the interaction matrix is:

t =@t -t7)/2 9)
and the interaction matrix is defined as:
T=[t, t, ...ty (10)

The

IV. WAVEFRONT RECONSTRUCTION

A. Sandard Regularization

A naive solution to the AO control problem seeksydio
iminimize the 2-norm of the error vector which reésuh a
reconstructor that is the pseudo-inverse of theramtion
matrix. However, the interaction matrix is ill-cdtidned
and the resultant reconstructor has been verifedbe
unstable in practice. A widely used technique foe t
inversion is the truncated singular value decomjuosi
(SVD) where the smallest singular valuesToére dropped.
A more practical alternative to the SVD methodtandard
regularization where instead of dropping the srsalle
singular values, a constant regularization fact added to
all the singular values [9]. This is equivalentadding an
input penalty to the standard cost function:

I(K) = e[, +a* | ukl; (11)
Minimizing J with respect tai(k) obtains the reconstructor:
L=—TT+a1)T" (12)
Note that the design parameteis the noise to signal ratio
of the system.

B. Local Waffle Penalty

Waffle modes are created by driving adjacent aotsain
opposite directions producing a voltage map resega
checkerboard pattern. Patches of this pattern dren o
observed when SVD or standard regularization mestard
used. Since they are not well sensed by the Wk, ¢hn
slowly build up in the control loop degrading retinmage
quality in the process.

The suppression of waffle modes is a spatial fraque
shaping problem. The following finite impulse respe
(FIR) filter is used to model local waffle structyo]:

1 -1

-1 1
which is simply a first derivative operation. Byptamenting
this convolution operation as a matrix multiplicatiapplied

to the input vectoru(k), the cost function and its

corresponding reconstructor can be derived as:

I(k) = Je(®)[; + u" (][ @®F F+7°WW' Ju(k) (13)
(14)

whereF is the convolution matrix form of the FIR filterrfo
local waffle. MatrixV is designed to span the nullspacd-of
(required for a’F'F +7?vV " = 0). In principle, piston is
the only mode that needs to be included/ibut empirical

observations of tip and tilt mode buildup duringsgd loop

operation lead to their inclusion as well. The cfuves of

piston, tip and tilt modes are shown in Fig. (4).

Since there are 213 subapertures and each sub@pertuc  Kolmogorov Penalty

estimates both x and y derivatives, the dimensa@nb are
426 by 140. The final model used is based the geecd
several generated interaction matrices.

In astronomy, statistical models for noise and aiheric
turbulence are routinely used to optimize the desifthe
reconstructor matrix [9, 10]. Atmospheric turbulers often



modeled to follow Kolmogorov theory, but there iddence
that the spatial power spectrum of the eye’s wédnegrations
also follow the classical Kolmogorov model [11].sAsning
the wavefront is proportional to the actuator comds a
sparse approximation for the inverse wavefront danae
matrix for the Kolmogorov model exists [12]:

AL =C'C (15)
whereC is the convolution matrix form of the FIR filteorf
the discrete Laplacian operator:

0 1 O
1 -4 1
0 1 O

Denoting the noise covariance matrix By, , which we

assume to be both white and constant in varianaessithe
pupil, the cost function and its corresponding restauctor
become very similar to those for the previous desig

I(k) =€" (AL k) + T (K)[ A, +77VV ] u(k)
=|e()[; + u" (K)[ @*C C+7*WVT Ju(k)
L=—TT+atC+pyv ) TT

(16)

7

The nullspace o€ is spanned by piston, tip and tilt so thes

modes make up the columns\oflt is worth noting that this
reconstructor under integral control is the minimueniance
controller for nearly ideal imaging conditions [13]

Fig. 4. From left to right: piston, tip and tiltpot modes.

D. Zernike Polynomials
Zernike polynomials, a set of two dimensional poiymals

that are orthogonal over the unit circle, are almo]%

exclusively used to quantify the eye’s wave abamnat[11,
14, 15]. If a finite set of Zernike modes can aateiy
represent the eye’s aberrations, projecting thetimector

onto a Zernike spanned subspace should improvemyst

robustness during less-than-ideal experimental itiond.
Furthermore, this method can allow for the cormectof
certain Zernike modes (i.e. defocus, astigmatigm) &hile
leaving all others intact which may be useful fartain
applications such as vision performance testing.

An input vector defined by the first N Zernike msdean
be described by:

N-1
u=>cz =2Zc (18)
i=0
Where ¢, and Z are the T Zernike coefficient and mode
vector (evaluated at each actuator point) respagtivand
the matrices are defined as:

z=[z, z, Z,.,)O0g¥ e

c=[c, ¢, Cuy| OO (20)

Zy through 2z correspond to piston, tip and tilt and are
therefore not included iZ. N is 66 for the 16 order
correction used in this study. Substituting eq.) (8o eq.
(6) obtains the relationship between the errorareahd the
Zernike coefficient vector:

ek)=TZckk-1D+y, (21)
The Zernike polynomial reconstructor minimizes ttast
function with respect to the Zernike coefficientia:

3() =[led; +a* el (22)

L =-Z[(T2) (T2) +af 1TT2) 7 (23)

It is worth noting from an implementation standgdhat
the Zernike polynomials lose their orthogonality emh
discretized and extrapolated over a nearly squateator
array. For this reason, matrix is ill-conditioned, so the
Gram-Schmidt procedure is applied to the column<Z of
before evaluating eq. (23).

(19)

V. STABILITY

%tability for the closed loop system described &py. €7) and

(8) can be addressed by analyzing the behaviorhef t
Lyapunov function:

V(e(k+1)=€ (k+1)ek+1)
=e" (K)[I+TL]I +TLB(K
Letting W be the weighting matrix omi(k) (c(k) for the
Zernike polynomial case), it can be shown that:
V(e(k+1)=€ (k) gk)— ¢k) L( T T+2W)Lek)

= AV (e(k)) =—€ (k) L (T' T+2W)Le (k)

Matrix W must be positive definite because the lack of
weighting on inputu(t) would create unbounded input
magnitudes leading to actuator saturation. Forstahedard
regularization and Zernike polynomial cased/ was
roportional to identity so positive definitenesasatrivial.

or the other two designs, we manually identifigecific
modes that needed to be explicitly penalized ineprib
establish positive definiteness. It follows immedig that:
TT+2W =0 (25)

But sincel is a weighted inverse oF, it cannot have full
column rank { O0%**%). Therefore,
L'"MT+2V ) =0

= AV(ek))<0

so the system is stable in the sense of Lyapurgardéess of
which reconstructor is used. However, this is ehotg
guarantee that the control signal and wavefrordresignals
do not go unbounded.

A more thorough stability analysis would requicearate
modeling of electrostatic actuation coupled withe th
membrane deformation properties of the DM. A
mathematical model of the type of MEMS device usketthis

(24)

(26)



study has been assessed [16]. It was not adoptethifo £98 —n ] 2% s
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The imaging sessions were kept short (~20 secoadd)
administered minutes apart to minimize subjectgtai
which may bias the comparisons. The center of #ster
scan was placed approximately 0.4 degrees outdidbeo
subjects preferred fixation point.

Time (seconds) T?me (seconds)

Fig. 5. Performance based on the estimated RMBeofasidual wavefront
error for subject 1 (left) and subject 2 (rightR S standard regularization;
LWP — local waffle penalty; KP — Kolmogorov penaltyP — Zernike

polynomials

The scanning was

60 100

performed over approximately 0.9 degrees retin: T T T T, o L L

eccentricity which corresponds to about 0.265 mm fcg | Sl .o ety

subject 1 and 0.279 mm for subject 2 since eyes sitiféer 245 __________ iEgin " _,_.f | 223 f; ’

among individuals. The two image quality metricedigo 240 4 IS E O |- o j

quantify system performance are the root-mean-sque 2 3 S Rp| S40 : e

(RMS) wavefront error and the mean pixel value loé t zg ‘ s 23__‘ S
0 2 4 6 10 12 14 16 0 2 4 10 12 14 16

retinal image. The RMS wavefront error was computed

real-time and logged for each experiment. Meanl|piakies
were computed offline.

Time (seconds) Time (seconds)

Fig. 6. Performance based on the mean pixel vdltleeaetinal images

The sampled wavefront gradients from output veetky RMS error (nm) Mean pixel value
were integrated to estimate the two-dimensional efrawnt Subject 1| Subject2 Subject 1 Subject 2
maps used to compute the RMS wavefront error [17]SR | 76+16 | 63+11 | 50.92+1.58 82.12+4.28
According to Fig. (5), the RMS error converged infaur | LWP | 76 +11 | 57+8 53.60+1.50 75.34+4.92
cases for both subjects and remained near thecbgscted | KP_ | 6511 | 59+16 | 53.85+1.28§ 90.32+4.33
state over the entire imaging session. Howevefopeance [ZP | 94%14 | 625 | 48.36%3.42 76.74+240

traces based on the mean pixel value of each @&ciaime,
shown in Fig. (6), displayed a much greater levél
diversity. The retinal image pixel values are malieect
indicators of image quality since certain aberragpyofiles
from either the DM or the eye can lie beyond thedag
capabilities of the WFS.

The temporal mean and standard deviation for brotge
quality metrics during closed loop operation atgutated in
Fig. (7). The results suggest that the Kolmogorewngity
reconstructor modeled the power spectrum of thésayave

Fig. 7. Temporal mean and standard deviation oRNS wavefront error
and the mean pixel value beginning from about temosds after closing
Ghe control loop

VII. CONCLUSION

The work presented in this paper marks the firep b
improving the resolution of a vision science AO @imay
systems by using more advanced controllers; an ritapb
design component that is often overlooked basegtl@vant
literature. We have addressed the AO control proble
focusing primarily on implementation and testingdan

aberrations most accurately out of the four testefemonstrated that sharper images of the human roosaic

reconstructors. The Zernike polynomial
performed the worst overall for the two subjectstliis

reconstmciqan be obtained by improving the control systemr Fo

countering the static nonlinear properties of th&NS

study, but we have experienced imaging conditiohere jeyice, we have added an input linearization steget on
measurements were poor, and only the Zernike palialo geflection measurements made using a PSI. A drifiesign
reconstructor was robust enough to make an efectikomponent of the integrator type controller for Ag@stems
correction. is the wavefront reconstructor. Four reconstruchased on

A set of acquired cone mosaic images are showridn Fihe optimization of quadratic cost functions weesdibed
(8). They correspond to the data in Fig. (5) argl k) for  ang tested on two real eyes. In addition to thedsted
subject 2, stabilized and frame averaged (100 mignuareqylarization method, we considered two desigrisgus
selected frames) to improve contrast. The roundsspih spatial frequency shaped DM modes and also a modal
varying intensities packed in a nearly hexagoneyagre reconstructor based on a finite set of Zernike patyials [9,
cone photoreceptors. For this particular subjebties¢ 12 19].
features are noticeably more blurry in images aeguiising Two quantitative image quality metrics were used to
the Zernike polynomials and the local waffle peyalteyajyate the performance of the control algorithi)sRMS
reconstructors, which is consistent with the obsérmean esidual wavefront error and the 2) mean pixel @adfi the
pixel value traces. Cones become much smaller amc: M acquired retinal image. Even though the four cdietrs

tightly packed at the fovea center [18], and furthgstem nerformed similarly according to the computed RMS
refinements are needed to reliably resolve them.



wavefront error, they did not all produce retinadages of
similar quality. The mean pixel value is a moresiive [1]
indicator of retinal image quality because it isedily related

to the system’s PSF. The Kolmogorov penalty recansir 2]
performed the best according to the mean pixel e/aILE
suggesting that it makes a reasonable approximatiche
statistics of the eye’s wave aberrations. Even dhothe
Zernike polynomial reconstructor did not outperfothe
other methods in most cases, it can be a practitahative
during less than ideal imaging conditions.

(3]

(4]

(5]

(6]

(71

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Fig. 8. Examples of AOSLO images from subject 2uaregl with each of [18]
the four control algorithms (top left: SR, top fighWP, bottom left: KP
and bottom right: ZP). Each image subtends fronr@pmately 0 (fovea
center) to 0.8 degrees (0.25 mm) eccentricity. [19]
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