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Part 1 The Optics of the Eye

(NOTE: sections 1.1 and 1.2 will not be 
covered in the lecture. They are included 

for your reference)
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Refraction and Image Formation
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define:

object vergence at surface

image vergence at surface

Refraction and Image Formation
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Refraction and Image Formation
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To simplify image formation in 
the eye we use the reduced 
eye. The reduced eye has a 
single refracting surface

n’=4/3n’=1

F=60 D

1.2 The reduced eye



FLL +=′

ee FKKFKK −′=⇒+=′         

By definition, in the human eye

In the reduced eye,
k (far point) and k’ are measured from the 

refracting surface.

1.2 The reduced eye



Cornea (first surface)

transition from air (n =1)
to front surface of
cornea (n = 1.376)

radius of curvature = 7.7 mm

power:

1.3 Components of the human optical system
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Cornea (second surface)

Transition from back surface
of cornea (n = 1.376) to the
aqueous humor (n  = 1.336)
radius of curvature = 6.8 mm

power:

total power of cornea ~ +43 D

1.3 Components of the human optical system
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The Pupil is affected by:

light conditions 
attention
emotion
age 

Function:

govern image quality
depth of focus
control light level?

1.3 Components of the human optical system



• Stimulus Variables
– light level
– spectral composition
– spatial configurations

• field size
• spatial structure of field

– monocular/binocular view
– accommodative state
– non-visual stimuli

• pain
• noise

• Observer Variables
– individual differences
– age
– day-to-day within observer variance
– biomechanical factors

• respiration
• heart beat

– cognitive factors
• arousal, attention, fright
• workload
• hedonistic content

Pokorny and Smith, 1997

Factors affecting pupil size

1.3 Components of the human optical system



The pupil is perfectly located to maximize 
the field of view of the eye

Recall that the ½-illumination field of view is 
defined as the angle subtended from the center of 
the entrance pupil to the edges of the field stop.

Aperture stop

Entrance pupil

Extremely wide 
field of view

.Cornea

1.3 Components of the human optical system



The range of luminances in the environment is enormous!
1.3 Components of the human optical system

Rodieck, B. The First Steps in Seeing

luminance (cd/m2)

10-6 10-5 10-4 10-3 10-2 10-1 1 10 102 103 104 105 106 107 108 109 1010

rod 
threshhold

clear 
blue 
sky

snow
in 

sunlight

solar
disc

darkest 
sky

white paper 
illuminated by a 

full moon

cinema 
screen

computer 
monitor

surface 
of the moon

fluorescent 
bulb

incandescent 
light filament

retinal damage 
threshold (depends 

on pupil size)

floodlit buildings
statues



Crystalline Lens

Gradient index of refraction
n = 1.385 at surfaces
n = 1.375 at the equator
n ~= 1.41 at the center

Little refraction takes place at
the surface but instead the 
light curves as it passes 
through.

For a homogenous lens to have 
same power, the overall index
would have to be greater than the
peak index in the gradient.

total power of lens ~= 21 D

1.3 Components of the human optical system



courtesy of Adrian Glasser, PhD

1.3 Components of the human optical system



Accommodation

The relaxed eye is under tension
at the equator from the ciliary body.
This keeps the surfaces flat
enough so that for a typical eye
distant objects focus on
the retina.

1.3 Components of the human optical system



Accommodation

In the accommodated eye, 
the ciliary muscle constricts
and relaxes the tension on
the equator of the lens.

Surface curvature increases.

Power of the lens increases.

Power of the accommodated lens ~= 32.31 D

1.3 Components of the human optical system



1.3 Components of the human optical system

Accommmodation

• The eye needs ~ 60D of power to focus light 
from infinity onto its retina
– 1.33/60  = .02217 m = 22.17 mm

• Any extra power offered by the lens allows 
the eye to focus on near objects. 
– 8 D of extra power allows the eye to focus on 

objects as close as 1/8 = 0.125m = 12.5 cm



Retina:

Images are sampled by 
millions of rods and cones.

fovea: 5 degrees from 
optical axis
optic disc: 15 deg from fovea,
10 deg from optical axis.

1.3 Components of the human optical system



It is the angle subtended at the second nodal point by the image
It is also equal to the angle subtended at the first nodal point by the 
object

The nodal points are points in the optical system where the light passing 
through emerges at the same angle

The second nodal point in the eye is about 16.5 mm from the retina

Consider a 1 mm image on the retina…

1.3 Components of the human optical system
What is Visual Angle?

N’N

θ/2
θ/2 1mm

o

0.5tan 1.73
2 16.5 2

visual angle =  =3.47
an object subtending 3.47 deg makes a 1 mm image on the retina 
an object subtending 1 makes and image that is 288  across

o

o m

θ θ

θ

µ

= ⇒ =



1.3 Components of the human optical system

• 1 radian = 57.29 degrees
• 1 degree = .0174 radians = 17.4 mrad
• 1 minute = .29 mrad
• 1 mrad = 3.44 minutes
• 1 minute = 4.8 microns (depends on axial length)

• 1 foveal cone = 2.5 microns (with intersubject variability)

Visual Angle



1.3 Components of the human optical system 

Because small angle approximations require the units to 
be in radians.

( )

( )

sin    for small angles
eg. first try using degrees..
sin 1 0.017
now try using radians...
sin 0.017453 0.017452

θ θ≅

=

=

Why Radians?



1.3 Components of the human optical system 
Visual Angle: ‘Handy’ guide

*viewed at arms-length

fingernail
~1 deg*

fist
~10 deg*

moon (& sun)
0.5 deg

20/20 E
5 arcmin**

20/10 E
2.5 arcmin**

**1 degree = 60 arcmin



1 foveal cone 
= ~2.5 microns 
= ~0.5 arcmin

1.3 Components of the human optical system 

1 deg = ~288 microns

Visual Angle



1 foveal cone 
= ~2.5 microns 
= ~0.5 arcmin

20/20 letter
= 5 arcmin

1.3 Components of the human optical system 
Visual Angle

1 deg = ~288 microns



1 foveal cone 
= ~2.5 microns 
= ~0.5 arcmin

20/10 letter
= 2.5 arcmin

1.3 Components of the human optical system 
Visual Angle

1 deg = ~288 microns



1 foveal cone 
= ~2.5 microns 
= ~0.5 arcmin

Moon
= 30 arcmin

1.3 Components of the human optical system 
Visual Angle

1 deg = ~288 microns



1.3 Components of the human optical system

N’N

optical axis

C1

L1 L2

α
κ

C1
L1

L2
H H’

centers of curvature

λ

fixated object

Axes in the Eye



1.3 Components of the human optical system

• Optical axis: best line joining the centers of curvatures of the optical 
surfaces
– Some definitions choose to weight the centers of curvature by the 

respective powers of the components
• Visual axis: line from fovea through the nodal points
• Line of sight: line from object through center of entrance pupil that 

reaches the fovea (chief ray)
• Pupillary axis: line from center of curvature of corneal first surface 

with pupil center
• Angle alpha: angle between optical axis and visual axis
• Angle kappa: angle between pupillary axis and visual axis (angle 

kappa is easily observed as a displacement of the coaxially viewed 
corneal reflex from the pupil center of a fixating eye)

• Angle lambda: angle between pupillary axis and line of sight

Visual axis and line of sight are often assumed to be parallel, which is only 
true for distant objects

Axes and Angles in the Eye



optic disc

fovea
posterior pole

5 deg10 deg

1.3 Components of the human optical system



1.3 Components of the human optical system
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1.3 Components of the human optical system
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1.3 Components of the human optical system



5 arc min

JW 1 deg nasal JW 1 deg temporal

AN 1 deg nasal macaque 1.4 deg nasal



Boettner and Wolter, 1962

1.4 Transmission of the Ocular Media



Lens Optical Density Increases with Age

figure from Wyszecki and Stiles, 1982

1.4 Transmission of the Ocular Media



1.4 Transmission of the Ocular Media



“Now, it is not too much to say that if an optician wanted to 
sell me an instrument which had all these defects, I should 
think myself quite justified in blaming his carelessness in 
the strongest terms and giving him back his instrument”

Helmholtz (1881) on the eye’s optics.

Part 2 Image Quality in the Eye



2 mm 4 mm 6 mm

2.1 Blur, Defocus and Pupil Size



2 mm pupil 4 mm pupil 6 mm pupil

In focus

Focused 
in front 
of retina

Focused 
behind 
retina

2.1 Blur, Defocus and Pupil Size



2.1 Depth of focus is a function of pupil size

blur[mrad] [ ]
blur[minutes] 3.44 [ ]

D pupilsize mm
D pupilsize mm

= ×
= × ×

where D is the defocus in diopters

Computation of Geometric Blur Size



2.1 Depth of focus is a function of pupil size
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Derivation of Geometric Blur Size Eqn.



Application of Blur Equation

• 1 D defocus, 8 mm pupil produces 27.52 minute blur 
size ~ 0.5 degrees 

2.1 Depth of focus is a function of pupil size



2.1 Depth of focus is a function of pupil size

Draw a cross like this one on a page. Hold it so close that is it completely out of focus, 
then squint. You should see the horizontal line become clear. The line becomes clear 
because you have used your eyelids to make your effective pupil size smaller, thereby 
reducing the blur due to defocus on the retina image. Only the horizontal line appears 
clear because you have only reduced the blur in the horizontal direction. 



2.1 Blur, Defocus and Pupil Size

=

=



2.1 Depth of focus is a function of pupil size



“Any deviation of light rays from a 
rectilinear path which cannot be 
interpreted as reflection or refraction”

Sommerfeld, ~ 1894

2.2 Diffraction and Interference



2.2 Diffraction and Interference

• diffraction causes light to bend perpendicular to the direction of 
the diffracting edge

• interference causes the diffracted light to have peaks and 
valleys



2.2 Diffraction and Interference

• Also called far-field diffraction
• Occurs when the screen is held far from the aperture.

• Occurs at the focal point of a lens!

Fraunhofer Diffraction



rectangular aperture

square aperture

2.2 Diffraction and Interference
Fraunhofer Diffraction



???



Airy Disc

circular aperture

2.2 Diffraction and Interference

Sir George Biddel Airy: Inventor of spectacles for astigmatism



The Point Spread Function, or PSF, is the image 
that an optical system forms of a point source. 

The point source is the most fundamental object, 
and forms the basis for any complex object. 

The PSF is analogous to the Impulse Response 
Function in electronics.

2.3 The Point Spread Function



Airy Disc

The PSF for a perfect optical system is the Airy 
disc, which is the Fraunhofer diffraction pattern 

for a circular pupil.

2.3 The Point Spread Function
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2.3 The Point Spread Function
The Airy Disc
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 angle between peak and first minimum (in radians!)

 wavelength of the light

 pupil diameter

180
1 radian degrees

1 degree = 60 minutes of arc
1 minute of arc = 60 seconds of arc

1.22
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2.3 The Point Spread Function
The Airy Disc



1 mm 2 mm 3 mm 4 mm 5 mm 6 mm 7 mm

Diffraction-limited Eye

2.3 The Point Spread Function
PSF vs. Pupil Size: Perfect Eye



2.4 Resolution

Rayleigh 
resolution 

limit

Unresolved 
point sources

Resolved
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2.4 Resolution



2.4 Resolution

=

min

min

 angle subtended at the nodal point

180 1.2260
a

θ

λθ
π

≡

⋅
= × ×

5 
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2.
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20
/2

0
20

/1
0 PSF

2mm pupil
550 nm 



Keck telescope: 
(10 m reflector)

9

min
1.22 1.22 900 10

10
109.8 nanoradians
0.023 seconds of arc

a
λθ

−⋅ ⋅ ×
= =

=
=

> 2500 times better than the eye!



2.5 Light scatter in the human eye

slides courtesy of 
Thomas J. T. P. van den Berg

The Netherlands Ophthalmic Research Institute of the Royal Netherlands Academy 
of Arts and Sciences, 

Amsterdam, The Netherlands;

Published in:

van den Berg TJ, Hagenouw MP, Coppens JE. The ciliary corona: physical model and 
simulation of the fine needles radiating from point light sources. Invest Ophthalmol 
Vis Sci 2005; 46(7):2627-2632.  



Tom van den Berg



Sources of Scatter



Tom van den Berg



Ciliary corona

Actual subjective appearance of straylight: a pattern of very fine streaks, not at all 
like the circularly uniform (Airy disc-like) scattering pattern of particles of 

approximate wavelength size

Tom van den Berg



Effect of Scatter on Retinal Surface



Tom van den Berg



Tom van den Berg



2.5 Straylight (Glare) Equation

n

AEI
θ

=
where I is the retinal illuminance at the distance θ from the 
glare source of illuminance E. A is a scaling constant. n is 
usually calculated to be 2. 

0

0.005

0.01

0.015
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0.025

0 2 4 6 8 10 12
distance from glare source on retina (degrees)
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Equation applies outside of about 1 degree from the glare source.
Although 1% at 1 degree seems small, the total flux in the annulus outside of 1 
degree can amount to 10% or more. 



Longitudinal Chromatic Aberration

Blue focus

Red focus

2.6 Chromatic Aberration



Lateral 
Chromatic 
Aberration

2.6 Chromatic Aberration



2.6 Chromatic Aberration

Fig. 1. Chromatic difference of refraction from three experimental studies2–4 in the visible spectrum and best-fit Cauchy 
equation (5a), Cornu’s equation (5c), and Herzberger’s equation to the combined studies. All data were set to be zero at 
590 nm. Results of three studies6–8 with measurements in the infrared are also shown; we moved the data from these 
studies studies to coincide with Eq. (5a) at the lower wavelength (543 nm, Refs. 6 and 7) or at the lowest wavelength 
(700 nm, Ref. 8). Where shown, error bars indicate standard deviations.



Thibos, Bradley & Zhang, 1989

2.6 Chromatic Aberration



2.6 Chromatic Aberration



Perfect Eye
(limited only by diffraction)

2.7 Monochromatic Aberrations



Aberrated Eye

2.7 Monochromatic Aberrations



“I have never experienced any inconvenience from this 
imperfection, nor did I ever discover it till I made these 
experiments; and I believe I can examine minute objects 
with as much accuracy as most of those whose eyes are 
differently formed”

Thomas Young (1801) on his own aberrations.

2.8 The Total Aberrations of the Eye



Change in the line 
spread function with 

pupil size

Campbell & Gubisch, 1966

2.8 The Total Aberrations of the Eye



1 mm 2 mm 3 mm 4 mm 5 mm 6 mm 7 mm

Perfect Eye

Typical Eye

2.8 The Total Aberrations of the Eye
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2.8 The Total Aberrations of the Eye

Diffraction-limited eye
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2.8 The Total Aberrations of the Eye



2.9 The Modulation Transfer Function, or MTF
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2.9 The Modulation Transfer Function
3D MTF

vertical spatial 
frequency (c/d) horizontal spatial 

frequency (c/d)
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2.9 The Modulation Transfer Function
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increase in pupil size 



2.9 The Modulation Transfer Function
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2.9 The Modulation Transfer Function

20/20

20/10



Change in MTF with pupil size

2.9 The Modulation Transfer Function
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increase in pupil size 



PSFs for the same eye

2.9 The Modulation Transfer Function

1 2 3 4 5 6 7 8



2.10 The Phase Transfer 
Function, or PTF
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Phase Transfer Function
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2.11 Measurement of the wave 
aberrations of the eye



2.11 What is the Wavefront?

converging beam
=

spherical wavefront

parallel beam
=

plane wavefront



2.11 What is the Wavefront?

ideal wavefrontparallel beam
=

plane wavefront
defocused wavefront



2.11 What is the Wavefront?

parallel beam
=

plane wavefront aberrated beam
=

irregular wavefront

ideal wavefront



2.11 What is the Wavefront?

aberrated beam
=

irregular wavefront

diverging beam
=

spherical wavefront

ideal wavefront



2.11 What is the Wave Aberration?
diverging beam

=
spherical wavefront wave aberration



-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Wavefront Aberration

mm (right-left)
m

m
 (s

up
er

io
r-i

nf
er

io
r)

2.11 What is the Wave Aberration?
Wave Aberration of a Surface



What are Zernike Polynomials?

• set of basic shapes that are used to fit the 
wavefront

• analogous to the parabolic x2 shape that can 
be used to fit 2D data



Zernike Polynomials

1st order

2nd order

3rd order

4th order

5th order

high order aberrations

low order aberrations



Properties of Zernike Polynomials

• orthogonal
– terms are not similar in any way, so the weighting of one term 

does not depend on whether or not other terms are being fit also
• normalized

– the RMS wave aberration can be simply calculated as the vector of 
all or a subset of coefficients

• efficient
– Zernike shapes are very similar to typical aberrations found in the 

eye



2.11.3 Relationships Between 
Wave Aberration, 

PSF and MTF



PSF
(point spread function)

OTF 
(optical transfer function)

PTF (phase) MTF (contrast)

Image Quality Metrics

The reason we measure the wave aberration



( )
2 ( , )

, ( , )
i W x y

i iPSF x y FT P x y e
π
λ

− 
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 

( ) { }, ( , )x y i iMTF f f Amplitude FT PSF x y=   

The PSF is the Fourier Transform (FT) of the pupil function

The MTF is the amplitude component of the FT of the PSF

( ) { }, ( , )x y i iPTF f f Phase FT PSF x y=   

The PTF is the phase component of the FT of the PSF
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Perfect Eye

Aberrated Eye

2.11.4 Principles of the Shack-Hartmann 
Wavefront Sensor 



2.11.4 Principles of the Shack-Hartmann 
Wavefront Sensor
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Perfect eye

Wavefront Lens Array CCD Array

Aberrated 
(typical) eye

2.11.4 Principles of the Shack-Hartmann 
Wavefront Sensor 



2.11.4 Principles of the Shack-Hartmann 
Wavefront Sensor 

• The local slope (or the first derivative) of the 
wavefront is determined at each lenslet location

• The corresponding wavefront is determined by a 
least squares fitting of the slopes to the derivative of 
a polynomial selected to fit the wavefront

• Zernike polynomial is the most commonly used

Fitting the Wavefront



2.11.4 Principles of the Shack-Hartmann 
Wavefront Sensor: The Lenslet Array 



Shack-Hartmann Images
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2.11.4 Principles of the Shack-Hartmann 
Wavefront Sensor 



Wavefront Maps
(at best focal plane)

BD KW SM
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2.11.4 Principles of the Shack-Hartmann 
Wavefront Sensor 



Wavefront sensor image Wavefront aberration

Aberrations of an RK patient

2.11.4 Principles of the Shack-Hartmann 
Wavefront Sensor 



Aberrations of a LASIK patient
Wavefront sensor image Wavefront aberration

2.11.4 Principles of the Shack-Hartmann 
Wavefront Sensor 



Post - RK Post - LASIK

2.11.4 Principles of the Shack-Hartmann 
Wavefront Sensor 



2.11.4 Principles of the Shack-Hartmann 
Wavefront Sensor 

Keratoconus



2.11.5 Metrics to Define Image Quality



Wave Aberration Contour Map
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2.11.5 Metrics to Define Image Quality



-0.5 0 0.5 1 1.5 2
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Ze
rn

ike
 te

rm
Coefficient value (microns)

astig.
defocus

astig.
trefoil
coma
coma
trefoil

spherical aberration

2nd order

3rd order

4th order

5th order

Breakdown of Zernike Terms

2.11.5 Metrics to Define Image Quality



2.11.5 Metrics to Define Image Quality
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2.11.5 Metrics to Define Image Quality

( ) ( ) ( ) ( )2 2 2 22 0 2 1
2 2 2 3 .......RMS Z Z Z Z− −= + + +

……

Include the terms for which you want to determine their impact (eg defocus 
and astigmatism only, third order terms or high order terms etc.)

Root Mean Square Wave Aberration



2.11.5 Metrics to Define Image Quality

Point Spread Function



2.11.5 Metrics to Define Image Quality

diffraction-limited PSF
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( , )    ( , )        ( , )PSF x y O x y I x y⊗ =

Convolution

2.12 Metrics to Define Image Quality

=

=
works 

the same 
for 

inverse 
contrast!



2.11.5 Metrics to Define Image Quality
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Typical Values for Wave Aberration

• Strehl ratios are about 5% for a 5 mm pupil that has been 
corrected for defocus and astigmatism.

• Strehl ratios for small (~ 1 mm) pupils approach 1, but the 
image quality is poor due to diffraction.

Strehl Ratio



How bad is the eye? Static Aberrations

This metastudy compiles population 
statistics of over 1300 eyes collected 

from 10 different labs



How bad is the eye?: Static Aberrations

For the most part, aberrations in the eye are random. When you average enough eyes 
together, most terms are no different from zero. The only high order aberrations that is 
non-zero is spherical aberration, which averages to a small positive value.

Salmon & van de Pol, J Cataract Ref Surg, 2006



How bad is the eye?: Static Aberrations

A population average of the magnitude of the Zernike terms shows that high order 
aberrations are dominated by 3rd order and spherical aberration. 

Salmon & van de Pol, J Cataract Ref Surg, 2006



How bad is the eye?: Static Aberrations

Like most optical systems, the aberrations diminish as the aperture is reduced. 

But unlike turbulence from a telescope, the paraxial regions of the eye have lower 
aberrations than marginal locations (ie Fried’s parameter is not constant)

Salmon & van de Pol, J Cataract Ref Surg, 2006



How bad is the eye?: Static Aberrations

Overall, the eye’s high order aberrations reduce with pupil size. The dashed line indicates 
the effective diffraction limit, according to Marachel’s criterion (RMS < λ/14) for 550 nm 
light.

Salmon & van de Pol, J Cataract Ref Surg, 2006



Diaz-Santana et al. Benefit of higher closed-loop bandwidths in ocular adaptive optics, Opt Express, 11: (2003)

How bad is the eye?: Dynamic Aberrations



• Dynamic Changes in the wave aberrations are 
caused by

– accommodation
– eye movement
– eye translation
– tear film

2.12 Typical Values for Wave Aberration



Change in aberrations with age

Monochromatic Aberrations as a Function of Age, from Childhood to Advanced Age
Isabelle Brunette,1 Juan M. Bueno,2 Mireille Parent,1,3 Habib Hamam,3 and Pierre Simonet3

2.12 Typical Values for Wave Aberration



40 microns
0.2 deg 

Localizing the Receptive Field
the black spot indicates where a dim red laser has been turned on

Sincich et al, Nature Neuroscience, 2009



Summary

• geometrical optics
• physical optics
• optical quality in the eye
• metrics for determining visual image quality
• measurement of optical quality in the eye



Thank YouTHANKS FOR 
YOUR ATTENTION!
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